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Abstract. Lattice-Boltzmannmethods are versatile numerical modeling techniques ca-
pable of reproducing a wide variety of fluid-mechanical behavior. These methods are
well suited to parallel implementation, particularly on the single-instruction multiple
data (SIMD) parallel processing environments found in computer graphics processing
units (GPUs).
Although more recent programming tools dramatically improve the ease with which
GPU programs can be written, the programming environment still lacks the flexibility
available to more traditional CPU programs. In particular, it may be difficult to de-
velop modular and extensible programs that require variable on-device functionality
with current GPU architectures.
This paper describes a process of automatic code generation that overcomes these dif-
ficulties for lattice-Boltzmann simulations. It details the development of GPU-based
modules for an extensible lattice-Boltzmann simulation package – LBHydra. The per-
formance of the automatically generated code is compared to equivalent purpose writ-
ten codes for both single-phase, multiple-phase, and multiple-component flows. The
flexibility of the newmethod is demonstrated by simulating a rising, dissolving droplet
in a porous medium with user generated lattice-Boltzmann models and subroutines.

AMS subject classifications: 65C20, 76Txx, 82B40
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1 Introduction

Lattice-Boltzmann simulations are a “bottom-up” numerical method capable ofmodeling
a variety of complex fluid mechanical problems (for example, complex boundary condi-
tions, immiscible fluids, and heat and solute transport) that are difficult or impossible to
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handle with other modeling methods [1–3]. Their versatility and relative ease of imple-
mentation makes lattice-Boltzmann methods particularly attractive for a wide range of
applications in both science and engineering [2–4].

In addition, Lattice-Boltzmannmethods are readily parallelizable and are particularly
suited to implementation on single-instruction multiple data (SIMD) parallel processing
environments. In recent years, substantial performance increases have been achieved
with lattice-Boltzmann methods by exploiting the SIMD environment in modern com-
puter graphics processing units (GPUs) [5–8]. Possibly the first such model proposed
by Li et al. [9] in the early 2000’s achieved an impressive 50x speedup over single core
implementations at the time with 9.87 million lattice-node updates per second (MLUPs).
Early on, significant drawbacks in the GPU programming model (reduced precision and
the requirement that the algorithm be cast in terms of graphics operations), hindered the
programmer’s ability to develop more complex lattice-Boltzmann models, such as multi-
phase and multicomponent fluid flow simulations, and presented a significant barrier to
widespread use of GPU-based programs [10]. In the years since, however, these barriers
have been largely removed with the release of the current generation of GPU-based pro-
gramming tools, such as nVIDIA’s CUDA – a C-like programming language that allows
programs to be written for graphics cards [11]. CUDA also provides new functionality
that distinguishes it from the early GPU programming models (e.g. random access byte-
addressable memory and support for coordination and communication among processes
through thread synchronization and shared memory), thereby allowing more efficient
processing of complex data dependencies. Finally, CUDA also supports single and dou-
ble precision, and IEEE-compliant arithmetic [11]. These advances have extended the
applicability of GPU computation to a much broader range of computational problems
in science and engineering [8].

Nevertheless, while these newGPU programming tools dramatically improve on pre-
vious generations, GPU implementations continue to lack some of the flexibility of CPU
based programs. Specifically, under the GPU programming model, it may be difficult to
develop modular and extensible programs with variable on-device functionality.

This paper describes a process of automatic code generation to circumvent these diffi-
culties for lattice-Boltzmann methods. It details the development of GPU-based modules
for LBHydra, an extensible lattice-Boltzmann simulation package capable of modeling
a wide array of fluid mechanical behavior. Section 2 discusses lattice-Boltzmann simu-
lations and the automatic code generation process used to add GPU capabilities to LB-
Hydra. In Section 3, we compare the performance of the automatically created code with
previous purposewritten examples, and demonstrate the flexibility of themethod by em-
ploying user generated models to simulate the dissolution of CO2 droplets in a porous
medium. Conclusions are summarized in Section 4.



3

2 A GPU module for Lattice-Boltzmann methods

In this section, we describe how the LBHydra lattice-Boltzmann simulation package has
been extended to include GPU basedmodels. LBHydra offers numerous areas for user in-
put and modification, including user-defined material models, lattice-types and subrou-
tines. It has been employed in simulations of multiple-phase and multiple-component
fluids, heat and solute transport, dissolution, dispersion, and detailed pore-scale and
macroscopic scale simulations [12–16]. The GPU-based module described in this paper
allows the user to retain much of the flexibility of the main LBHydra program, while
accelerating the simulations with CUDA-compliant nVIDIA graphics processing units.

Lattice-Boltzmann methods represent fluid mechanical behavior via a collection of
fluid packets – discrete analogues to the particle density distribution functions in the clas-
sical Boltzmann equation. The fluid packets move about the lattice with fixed velocities,
with positions that are updated in discrete time steps. Each fluid packet has an associ-
ated density represented by a real number. Through a series of collision and streaming
steps, summarized by the following equation, the density distribution is relaxed towards
a local equilibrium determined from the macroscopic properties of the fluid at the node:

fi(x+ci∆t,t+∆t)=(1−λ) fi(x,t)+λ f
eq
i (x,t)+Fi(x,t), (2.1)

where f
eq
i is the equilibrium fluid packet density, λ is the collision frequency, ci is the lat-

tice velocity (Table 1), and Fi represents additional forcing or source/sink terms. The right
of equation (2.1) is the collision step – the relaxation of the fluid packet densities toward
the equilibrium densities, while the left side of the equation represents the streaming
step – the propagation of the fluid packets to neighboring nodes in the lattice. The popu-
lar D3Q19 (three-dimensional, 19-velocity) lattice is discussed in this paper [17], although
the same equation is also applicable to other lattice types. In addition, for the sake of sim-
plicity this paper concentrates on single-relaxation lattice-Boltzmann models, in which
the collision frequency λ is a scalar, although the approach presented is equally valid for
GPU implementations of multiple relaxation lattice-Boltzmann models (e.g. [5, 6]).

The expression for the equilibrium fluid packet densities, f
eq
i , depends on the consti-

tutive behavior of the fluid being modeled and the type of lattice employed. For example,
to simulate the Navier Stokes equations using the D3Q19 lattice, the equilibrium packet
densities, f

eq
i , are a function of the net fluid-packet density, ρ=∑i fi, and the net velocity

of the fluid packets, u=∑i fici/ρ:

f
eq
i =ρωi [1+3u·ci (1+3u·ci/2)−3u·u/2] , (2.2)

where ωi are lattice weights (Table 1). Different boundary conditions and constitutive
behaviors are invoked by modifying the collision step. Typically, several different col-
lision rules are required in a simulation, with the simulation geometry dictating how
rules are distributed across nodes. If the definition for f

eq
i in equation (2.2) is adopted,

the terms on the right of equation (2.1) are local to individual nodes. However, in more
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Figure 1: GPU kernel execution is based on groups of threads known as thread blocks. Inter-thread communi-
cation is made possible through shared memory, accessible to all threads within the same block. In addition,
threads have access to the GPU’s global memory, a larger data storage space which is available on the device,
distinct from the CPU host’s memory.

complex lattice-Boltzmann methods (e.g. multiple-phase and multiple-component meth-
ods [19, 20]), the equilibrium density distribution f

eq
i , the forcing terms Fi, and even the

collision frequency λ, may be functions of additional state (or internal) variables – prop-
erties of the node and its neighbors.

Nevertheless, the relative simplicity of the fluid-packet interactions and the strong
locality of the method, make lattice-Boltzmann models excellent candidates for parallel
implementation on the SIMD environments found in GPUs, as they permit large numbers
of lightweight processing threads to act simultaneously.

NVIDIA’s CUDA programming environment provides a set of minimal extensions to
the C programming language that enables programs to direct the large-numbers of GPU
threads efficiently. The CUDAprogramming environment organises individual GPU ker-
nels into groups of threads or “thread blocks”, themselves arranged into an array or
“block grid” [11]. These thread blocks are additionally segmented on a multiprocessor
at execution time into contiguous 32-thread groups known as “warps.” Each kernel call
specifies the number and arrangement of thread blocks (i.e. regular arrays of one or two
dimensions) to be executed, as well as the number and arrangement of threads within
each block (in one, two, or three dimensional arrays). While there are relatively few re-
strictions on the dimensions of the block grid, the dimensions of the individual thread
blocks and the number of blocks that can be executed simultaneously are strongly influ-
enced by underlying hardware constraints. Instructions exist to synchronize execution of
threads within each block, and inter-thread communication is supported within blocks
through shared memory (Figure 1). Communication between separate blocks is more
difficult as the order in which individual blocks are executed is not predetermined.
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The different types of memory dictate the basic pattern of implementation of lattice-
Boltzmann methods on the GPU. To maximize the relative amount of time spent on GPU
computation and reduce data transfer, we adopt a decelerator model [18], in which cal-
culation is confined to the GPU devices and the CPU host is reserved for subsidiary tasks
such as data initialization, data transfer between devices, and data output. In addition,
because CPU and GPU tasks are separated under the decelerator model, multiple-GPU
versions of the code (either with single or multiple CPUs) can be implemented with rel-
ative ease, and communication time can be reduced by using asyncronous operations on
the CPU and GPU.

After the fluid packet data is transferred from the CPU to the GPU, the thread blocks
iterate over the lattice with each thread acting on distinct nodes. The threads copy the
fluid packet data associated with the node from the global memory of the GPU to the
thread registers, where the collision step is performed, after which the updated fluid
packet densities are written back to the global memory. The streaming step is either
conducted explicitly in this process (by moving the fluid packet data to different locations
in the GPU’s global memory) or implicitly (by storing the fluid packets in fixed locations
and altering the manner in which fluid packets are read from local to global memory) [7,
12].

A particular feature of the GPU architecture is the high cost of data transfer between
global memory and thread registers – a result of the slow rate of transfer and the over-
head required to access global memory. The overhead is reduced in part with so-called
“coalesced” reads and writes from global memory, in which the threads act on contigu-
ous blocks of memory. Nevertheless, the slowermemory access means that suchmemory
operations should be kept to a minimum to achieve good performance.

Rather than invoke separate GPU kernels for each collision rule, the fluid packets at
each node are copied into the thread registers and different node types are distinguished
by a conditional statement within a single kernel to reduce the number of global mem-
ory operations. The presence of the conditional statement may create divergent warps –
where more than one type of collision rule is calculated within a thread warp. However,
this does not affect performance greatly: it is uncommon that more than two different
collision rules are applied within a warp, and in many cases only one rule will be encoun-
tered. More importantly, increasing the number conditional statements increases register
pressure, as the most complex collision rule dictates the number of registers required.

A drawback of this approach is it does not readily lend itself to extensible applications
that permit user-defined lattice-Boltzmann models. Although CUDA fully supports the
C++ programming language for host (CPU) code, only a subset of C++ is supported on
the GPU [11]. Specifically, CUDA provides GPU support for polymorphism, default pa-
rameters, operator overloading, namespaces, function templates and classes. However,
function pointers and virtual class functions are not currently supported for the GPU.
This prevents, for example, inheritance and upcasting within GPU kernels.

To overcome these limitations, theGPUmodule for LBHydra introduces a parser/compiler
step into the simulation pipeline (Figure 2). The parser is an object-oriented Python code
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ci (∆x/∆t) ωi

(0,0,0) 1/3
{0,0,±1} 1/18
{0,±1,±1} 1/36

Table 1: Lattice velocities, ci, and respective weights, ωi, for D3Q19 lattices. Curly braces, {}, indicate lattice
velocities comprising the distinct permutations terms within the braces.

containing objects representing the collision rules and state variables. Collision rule ob-
jects record the physical properties of the component (e.g. fluid viscosity) and the state
variables the method requires, and contain routines to generate the CUDA code for the
collision rule. The parser reads the simulation’s input files and determines the minimal
set of collision rules and state variables. This ensures that state variables are not dupli-
cated and reduces register pressure by eliminating unnecessary conditionals. The parser
then generates CUDA kernels to calculate both the state variables and collision rules.
From this information, the compiler creates a customized library, dynamically linked to
the LBHydra application, that enables the simulation to run on the GPU. Pseudo-code
outlining the code generated by the LBHydra GPU module is given in Appendix A.

The parser and compiler steps reintroduce some of the missing C++ functionality, be-
cause they are implemented on the CPU. This includes the ability to extend the parser and
compiler with dynamic libraries to introduce user-defined collision rules and state vari-
ables. The parser also allows additional user-defined subroutines and CUDA kernels to
control data initialization and functions to query and modify the simulation within each
time step. Separating the GPU-specific functions from the lattice-Boltzmann simulation
in this way enhances code reuse, and lets the user concentrate on the lattice-Boltzmann
simulation, rather than the details of the underlying CUDA implementation. This lat-
ter point is particularly important given the rate at which GPU architectures have been
developing and the impact that subsequent changes to coalesced memory operations,
the relative amounts of GPU memory, and other hardware changes have on the overall
simulation performance.

3 Results and Discussion

The performance of LBHydra’s automatically generated code is compared to that of
hand-written single-purpose examples from our previous publications [7, 12] in Table 3.
The programs are tested onNVIDIA Tesla C1060 GPUs of compute capacity 1.3 (complete
GPU specification found in Table 2). The host codes is compiled using the GNU g++
compiler 4.3.3 with the compiler flag “-O3” for compiler optimizations and the CUDA
kernel code using NVIDIA compiler NVCC release 2.3, V0.2.1221 with the compiler flag
“–use fast math.”
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Figure 2: LBHydra GPU simulation pipeline: The preprocessor generates an input file (1) which is first read (2)
by the Parser/Compiler to generate (3) a dynamic library linked to the main LBHydra program. The input file
is then read (4) by LBHydra which uses the newly-created library to run the GPU simulation (5).

Device Tesla C1060

Clock 1.296 GHz

Global Memory 4096 MiB

Mem. Clock 1600 MHz

Bus Width 512 bits

Processing Elements 240

Table 2: GPU Specifications

The overhead due to the parser and compiler is minimal (less than a minute) com-
pared to the time required to run a typical simulation (which may be several hours or
more depending on the application). In addition, the parser and compiler step is not re-
quired every time – the same dynamic library can be used in multiple simulations that
employ the same combination of lattice-Boltzmann methods. This latter feature is partic-
ularly useful, for example, when conducting parameter space analysis and optimization.

However, there is some loss of performance in the automatically generated code for
certain applications. Three different simulations are considered: a single-phase pressure
driven flow; a multiple-phase simulation of phase separation; and a multiple-component
simulation of two immiscible fluids. Themultiphase andmulticomponent lattice-Boltzmann
simulations are based onwell-knownmodels by Shan andChen [19], andHe andDoolen [20].
These models introduce an interaction potential to each node that is a function of ei-
ther the fluid density (in singlecomponent multiphase simulations) or the component
concentration (in multiple component simulations). The automatically generated code’s
speed is roughly equivalent to our previous implementations for both the single-phase
and multiple-phase lattice-Boltzmann methods. However, the multiple-component sim-
ulation is slower than the equivalent purpose written code. In the later case, the auto-
matically generated code makes less efficient use of shared memory and global memory
operations, as we have chosen to isolate state variable calculations per-component. This
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Model GPU codes Difference
Single-purpose Generated by LBHydra

Single phase 444 MLUPs 436 MLUPs -1.8%
Multiple phase 218 MLUPs 219 MLUPs +0.4%
Multiple component 218 MLUPs 198 MLUPs -10.0%

Table 3: Comparison between peak performances obtained with LBHydra’s automatically generated code and
equivalent purpose written examples. Speeds are measured in Millions of Lattice-node Updates Per second
(MLUPs).

choice was adopted to reduce register pressure in simulations with many state variables
per node, rather than a few state variables calculated across multiple components. Nev-
ertheless, the loss of performance is not very large – approximately 10% in this example.

The problem of optimizing GPU codes is highly non-linear, and subtle changes in
the calculation may adversely impact the code’s performance [21]. No effort is currently
made to optimize the code’s performance for specific models or GPU architectures in the
parser/compiler step. However, it may be possible in the future to combine the present
approach with an optimization algorithm (e.g. [12, 21–23]).

In Figure 3, the GPU module for LBHydra is used to simulate the dissolution of a
rising droplet in a porous medium. The simulation combines models representing the
two immiscible fluids with a third component representing the dissolved concentration
of carbon-dioxide. A detailed description of the lattice-Boltzmann methods used in this
simulations is provided in Walsh and Saar [15]. Briefly stated, in this model, particular
care is taken to ensure that the correct boundary conditions are applied at the moving
surface of the droplet. To achieve this, a more complex two component model [24] is em-
ployed in place of the multiple phase models described earlier to reduce “parasitic” or
“spurious” interface velocities [25, 26]. The first-order boundary condition at the droplet
surface is imposed at lattice-edges rather than at the nodes themselves [15]. This bound-
ary condition is enforced in a separate calculation step, after the collision step has been
applied to each node. To demonstrate the flexibility of the method, the simulation is im-
plemented with user-defined lattice-Boltzmann methods rather than the native methods
supplied with the code, and employs user-generated functions to control the boundary
condition.

4 Conclusion

Lattice-Boltzmannmethods are versatile fluidmechanical modeling techniques, well suited
to parallel implementation on Graphics Programming Units. While recent advances in
GPU programming environments and architectures have improved the process of de-
veloping GPU programs, these tools currently lack the full functionality of their CPU
equivalents. In particular, the absence of function pointers and true class inheritance on
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a) b) c)

Figure 3: LBHydra’s GPU module models a buoyant dissolving droplet of CO2 in a regular array of spheres.
Contour surfaces indicate concentrations of dissolved CO2 between 5% and 95% of the saturation concentration.
The innermost contour denotes the surface of the pure CO2 droplet.

the GPU, can make writing flexible and extensible codes difficult while simultaneously
maintaining high performance.

This paper discussed a means for lattice-Boltzmann simulations to avoid these limi-
tations by automatically generating the code required for specific simulations. This pro-
cess overcomes the lack of function pointers and inheritance on the GPU by generating a
minimal library of collision rules based on the simulation’s input files. In certain cases,
the current approach does not make as efficient use of shared memory as codes that have
been purposewritten for specific applications. Nevertheless, the resulting drop in perfor-
mance is not extreme (approximately 10% or less for the codes considered here), and may
be further mitigated in the future with the introduction of automatic code optimization
routines. The automatically generated code is particularly flexible, allowing the addi-
tion of user defined models and subroutines. This feature was demonstrated by using
the method to implement a complex simulation of dissolution from a rising droplet in a
porous medium. By separating the lattice-Boltzmann methods from the CUDA imple-
mentation, the approach presented here allows the user to concentrate on the details of
the simulation rather than the vagaries of the GPU programming environment.
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A Pseudo-code for the LBHydra GPU module

The following pseudo-code outlines the principle steps in an automatically generated
LBHydra program. We include directives generated for the OpenMP version of the code,
designed for systems combining multiple GPUs on a single CPU. An MPI version of the
code has also been created for clusters of multiple CPUs and GPUs. It contains additional
subroutines to copy data between CPUs in steps (3.3.1.ii) and (3.3.1.v).

1. Allocate memory on CPU for GPU-GPU transfer.

2. Create one thread per GPU: #pragma omp parallel num_threads(numGPUs)

3. Within the #pragma omp parallel num_threads(numGPUs) directive:
3.1. Assign thread to GPU: cudaSetDevice(th_id);
3.2. Copy initial conditions and problem geometry from CPU to GPU
3.3. for(ts = 0; ts < maxTimesteps; ts += outputFrequency):

3.3.1. for(t = 0; t < outputFrequency; t++):
State variables:
i. Calculate state variables for outer nodes
ii. Copy outer boundary state variables from GPU to CPU

Copy neighboring state variables from CPU to GPU
iii. Calculate state variable values (simultaneous with ii) on the GPU.

Collision and streaming:
iv. Perform fi streaming/collision steps for outer nodes
v. Copy outgoing outer boundary fi from GPU to CPU

Copy incoming outer boundary fi from CPU to GPU
vi. Perform inner fi streaming/collision (simultaneous with v) on the GPU.

3.3.2. Rearrange fi so location in memory is the spatial position.
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3.3.3. Copy fi data from GPU to CPU and save result to file.
3.4. Free GPU memory

4. Free CPU memory. End.
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